These slides cannot be re-produced without ISCM, and the producers written consent.

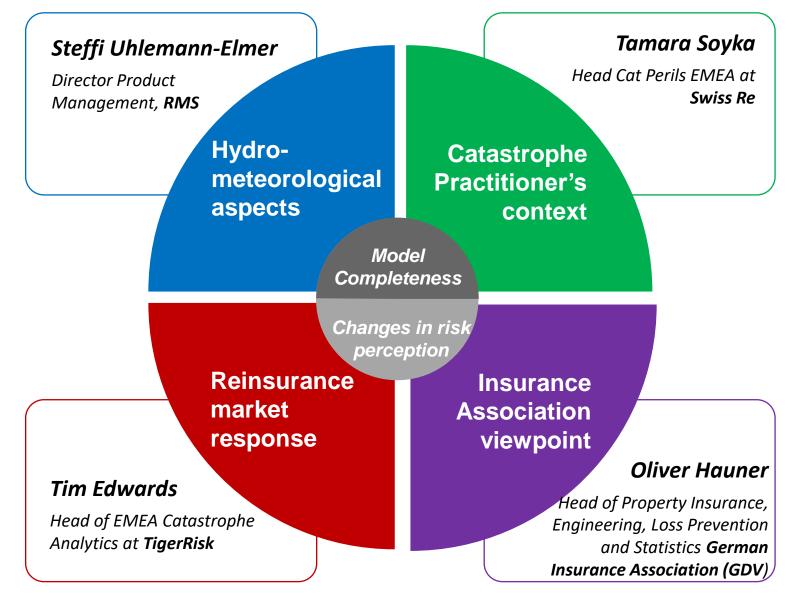
Antitrust statement

The ISCM Policy has been, and continues to be, to require full compliance with the antitrust and competition laws, and the avoidance of even the appearance of impropriety under those laws, in connection with ISCM activities anywhere in the world. This Policy applies to all members of the ISCM. The following three rules are the foundation of the ISCM's Policy and integral to its members' conduct:

1. ISCM MEMBERS MUST UNILATERALLY SET THEIR OWN BUSINESS TERMS. ISCM members must never agree with each other on any term of trade or business strategy concerning products that members currently offer. Such terms include prices or premiums, volume of business, underwriting terms or standards, brokerage commissions or other fees, market share, customers, types of business written or not written, coverage terms and territories.

2. DO NOT DISCUSS COMPETITIVELY SENSITIVE MATTERS. Members should not discuss with each other competitively sensitive issues concerning products currently or that may be offered, such as pricing or premiums, underwriting or coverage terms and standards, loss experience, rate-related information, reserves, IBNR, volume of business, customers, or specific elements of profitability. If such information is not otherwise publicly available or properly disseminated by the ISCM itself, it should not be discussed.

3. ASK BEFORE YOU ACT. Consultation with counsel can save untold time and money and can avoid embarrassment to the ISCM and its members.

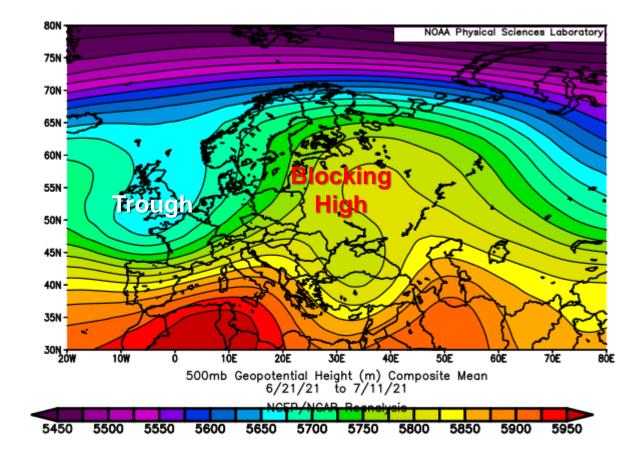


Tamara Soyka Steffi Uhlemann-Elmer Head Cat Perils EMEA at Director Product Swiss Re Management, RMS Hydro-Reinsurance meteorological **Practitioner's** aspects context Model Completeness Changes in risk perception Reinsurance Insurance market Association viewpoint response **Oliver Hauner** Tim Edwards Head of Property Insurance, Head of EMEA Catastrophe Engineering, Loss Prevention Analytics at TigerRisk and Statistics German Insurance Association (GDV)

Lessons learnt from the July 2021 European 'Bernd' floods

Lessons learnt from the July 2021 European 'Bernd' floods

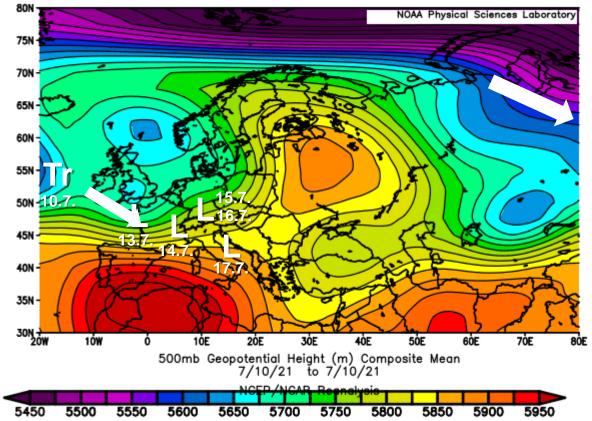
A Moody's Analytics Company


ISCM Lessons Learnt from European Flood 'Bernd'

Bernd Flood 2021: Hydrometeorological Overview

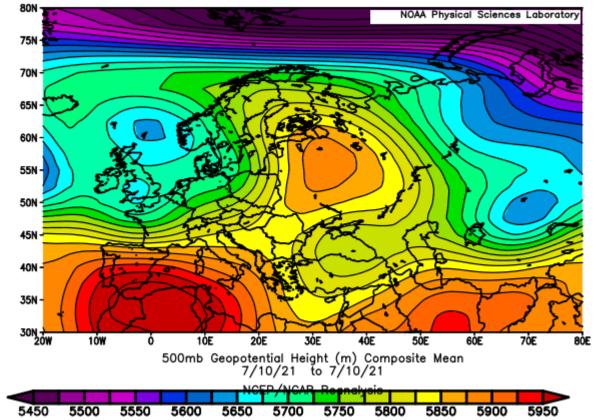
SUE | April 2022

The Season in review


- Mild winter with above average precipitation, i.e. high snow accumulation in the Alps
- Cool and regionally very wet spring in West & Central Europe (CH: coldest since 30yrs, wettest May since 100yrs)
- Distinct change of synoptic scale weather since mid June with strongly meandering jet stream:
 - Trough over Western Europe
 - meteorologically well known as one of the strongest thunderstorm situations in CE
 - Blocking High over Western Russia and eastern Europe
 - high air pressure near the ground and hot weather all the way to Scandinavia
- the "pair" of the precipitation trough and the high-pressure area to the east remained more or less stationary for weeks
- June characterised by a sequence of severe weather events, incl. hailstorms and tornadoes (F3 in CZ)

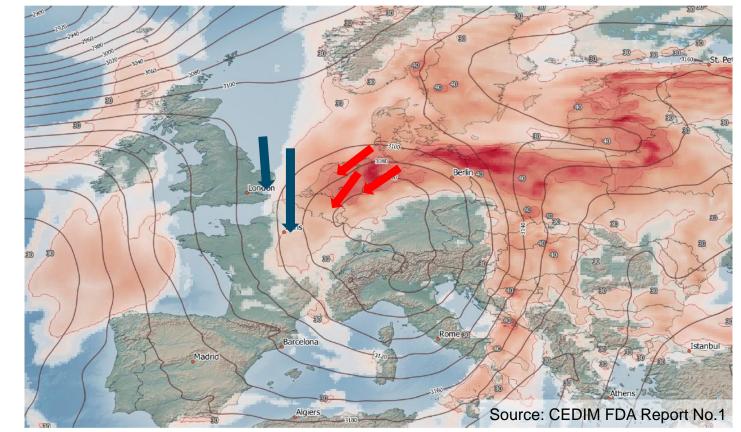
Meteorologic Overview of Low "Bernd"

- Start of July distinct Trough forms south of Greenland and quickly moves southeast
- Cut-off area of low-pressure (named "Bernd") remained stationary over western Europe for several days

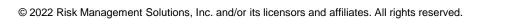


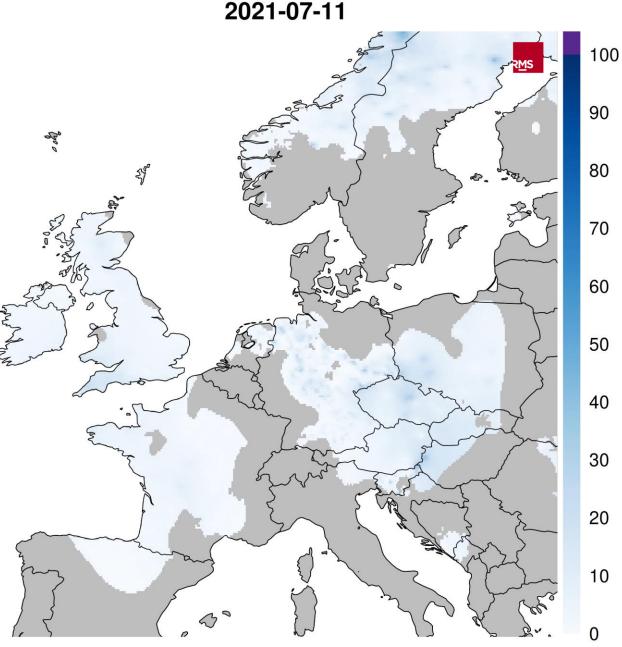
Meteorologic Overview of Low "Bernd"

- Start of July distinct trough forms south of Greenland and quickly moves south east
- Cut-off area of low-pressure (named "Bernd") remained stationary over western Europe for several days



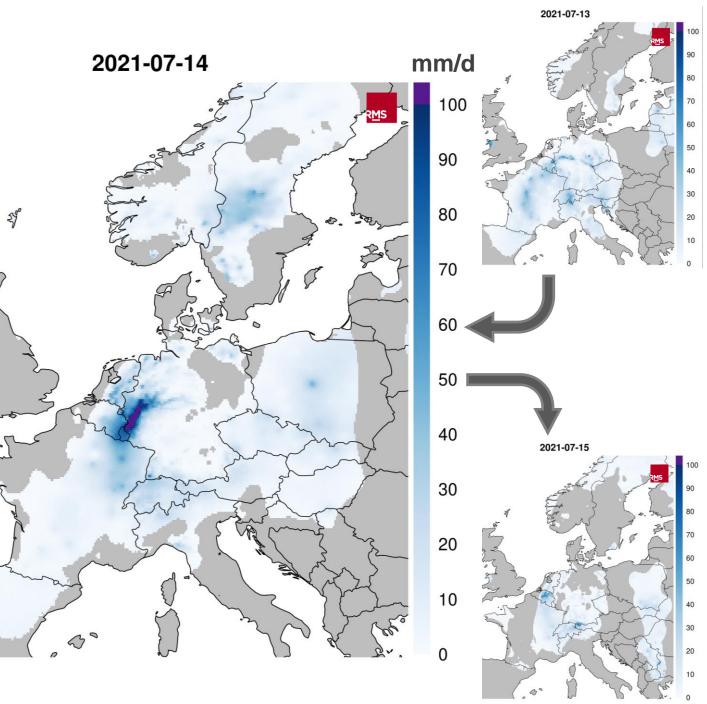
Meteorologic Overview


- Start of July distinct trough forms south of Greenland and quickly moves south east
- Cut-off area of low-pressure (named "Bernd") remained stationary over western Europe for several days
- Counterclockwise rotation transporting moist air from the Mediterranean in a wide arc north
- This airmass interacted with the cooler airmass being drawn in from the north and produced intense and prolonged rainfall across Western and Central Europe (northeastern France, western Germany, eastern Belgium, the Netherlands, and Luxembourg)


Precipitable Water in the Atmosphere (14. July)

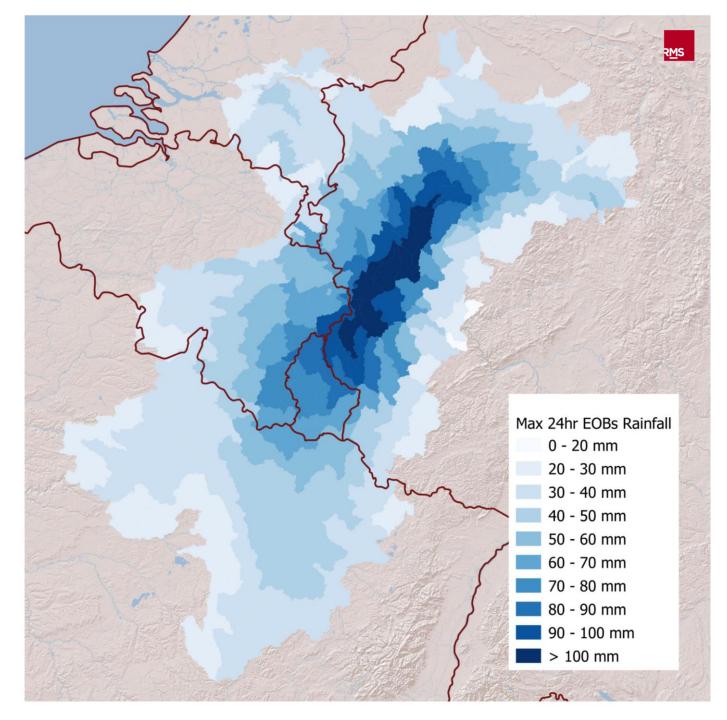
Meteorologischer Überblick

- Start of July distinct trough forms south of Greenland and quickly moves south east
- Cut-off area of low-pressure (named "Bernd") remained stationary over western Europe for several days
- Counterclockwise rotation transporting moist air from the Mediterranean in a wide arc north
- This airmass interacted with the cooler airmass being drawn in from the north and produced intense and prolonged rainfall across Western and Central Europe (northeastern France, western Germany, eastern Belgium, the Netherlands, and Luxembourg)

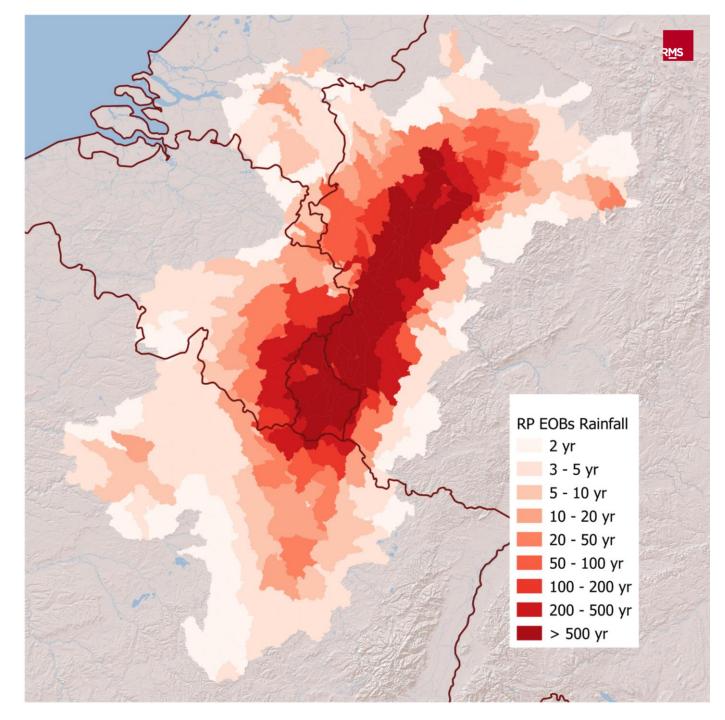

Data Source: EOBs daily, 0.1x0.1°

How much and when did it rain?

Source: D	DWD*
-----------	------


	14. Juli (mm/Tag)	Monat Juli (Mittelwert)	Faktor			
Kyll	145,7	73,1	1,99			
Erft	169,1	67,9	2,49			
Ahr	147,5	69,4	2,13			
Rur	154,1	74,4	2,07			
Mosel	145,7	71,6	2,03			
Wupper	151,4	100,7	1,50			

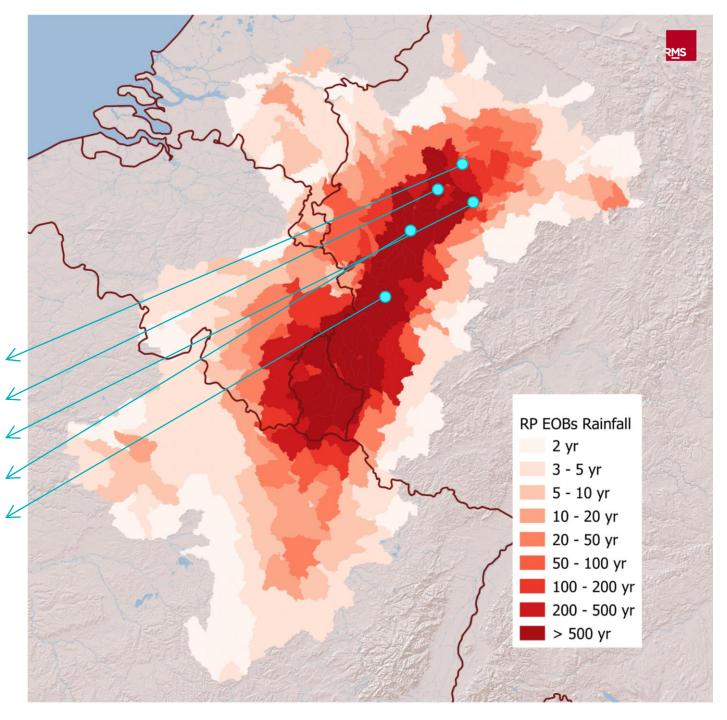
*T. Junghänel, et al. (2021) Hydro-klimatologische Einordnung der Stark- und Dauerniederschläge in Teilen Deutschlands im Zusammenhang mit dem Tiefdruckgebiet "Bernd" vom 12. bis 19. Juli 2021, DWD Geschäftsbereich Klima und Umwelt, <u>https://www.dwd.de/DE/leistungen/besondereereignisse/niedersc</u> <u>hlag/20210721_bericht_starkniederschlaege_tief_bernd.pdf</u>


Catchment Precipitation

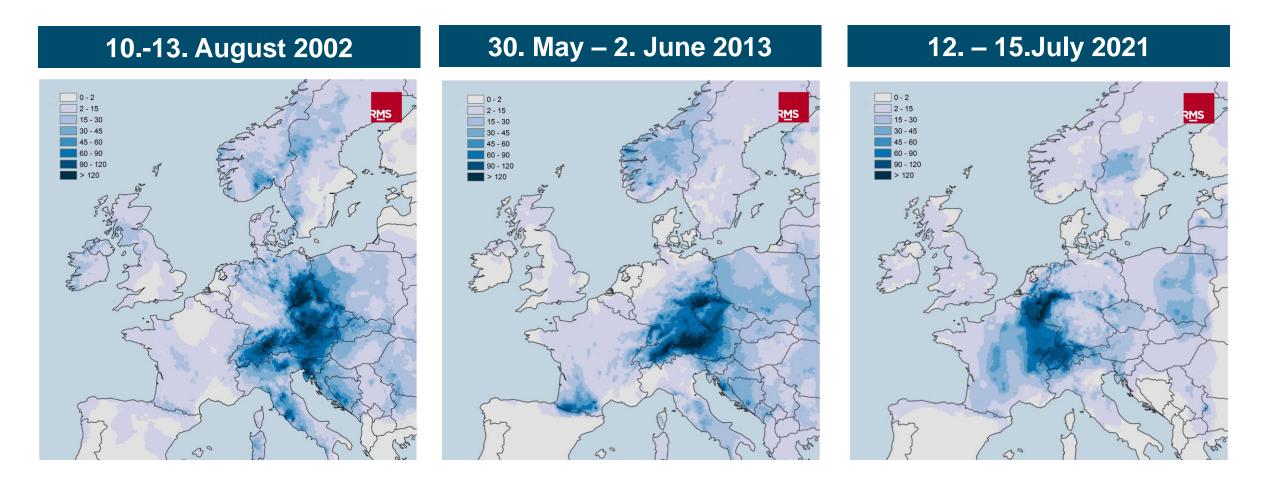
- E-OBS Precipitation sums aggregate at catchment level
- Maximum daily precipitation between 13. 15. July
- Used as input into RMS EUFL Model for event reconstruction

Catchment Precipitation Return Period

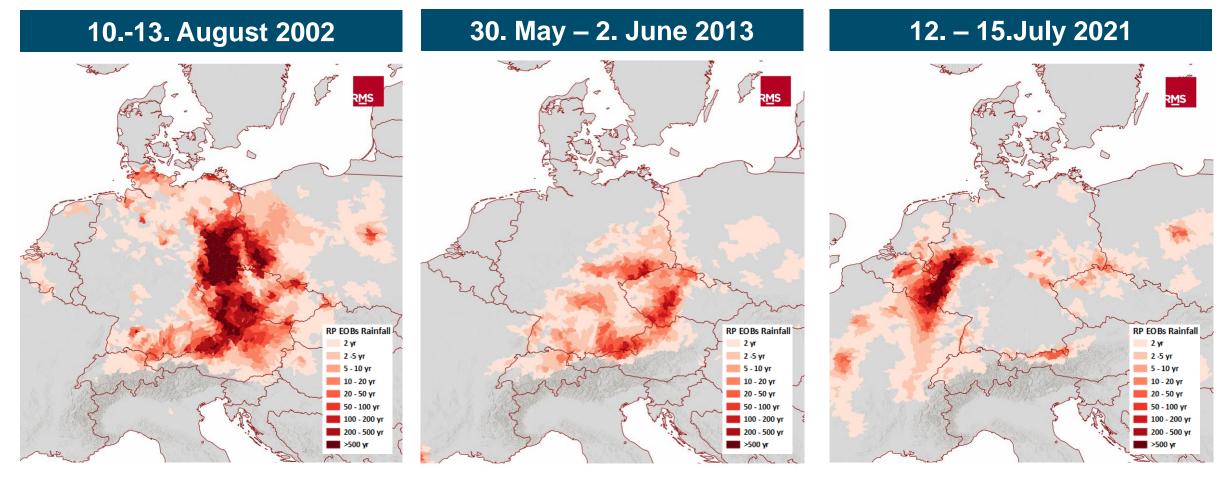
 Return period of catchment precipitation based on stochastic event catalogue of RMS HD Europe Inland Flood Model


Catchment Precipitation Return Period

- Return period of catchment precipitation based on stochastic event catalogue of RMS HD Europe Inland Flood Model
- Empirical RP estimate according to DWD*

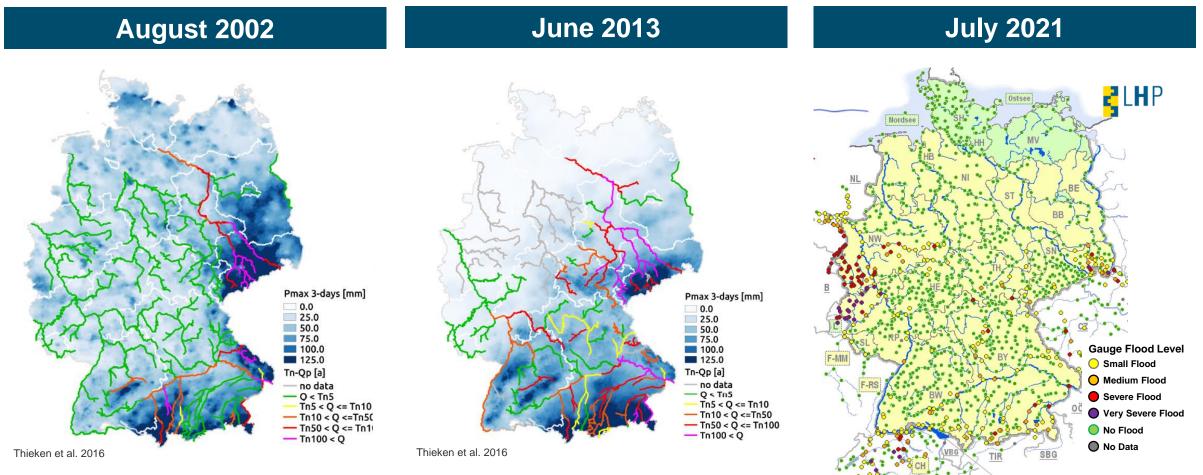

Station	Empirical RP [a]	Precipitation intensity (duration)
Hagen	> 100 a	241,3 <i>mm</i> (22 <i>h</i>)
Wuppertal	> 100 a	151,0 <i>mm</i> (24 <i>h</i>)
Wipperfurth	> 100 a	162,4 <i>mm</i> (24 <i>h</i>)
Köln	> 100 a	159,8 <i>mm</i> (24 <i>h</i>)
Dahlem	> 100 a	129,3 <i>mm</i> (24 <i>h</i>)

*T. Junghänel, et al. (2021) Hydro-klimatologische Einordnung der Stark- und Dauerniederschläge in Teilen Deutschlands im Zusammenhang mit dem Tiefdruckgebiet "Bernd" vom 12. bis 19. Juli 2021, DWD Geschäftsbereich Klima und Umwelt, <u>https://www.dwd.de/DE/leistungen/besondereereignisse/niederschlag</u> /20210721 bericht starkniederschlaege tief bernd.pdf


© 2022 Risk Management Solutions, Inc. and/or its licensors and affiliates. All rights reserved.

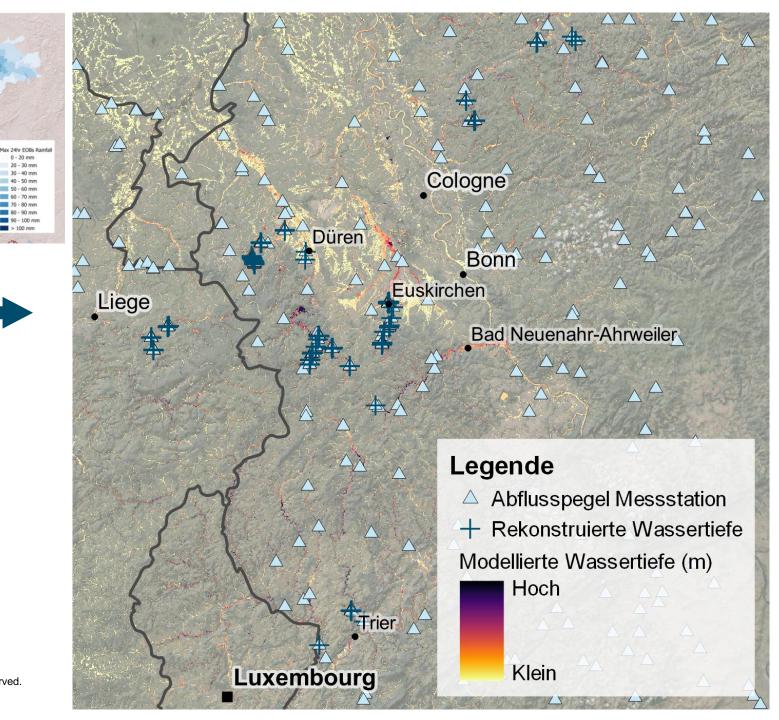

Bernd in perspective: 4day precipitation totals for 2002, 2013, and 2021 floods

Bernd in perspective: 24h max precipitation RPs for 2002, 2013, and 2021 floods



Bernd in perspective: Antecedent conditions for 2002, 2013, and 2021 floods

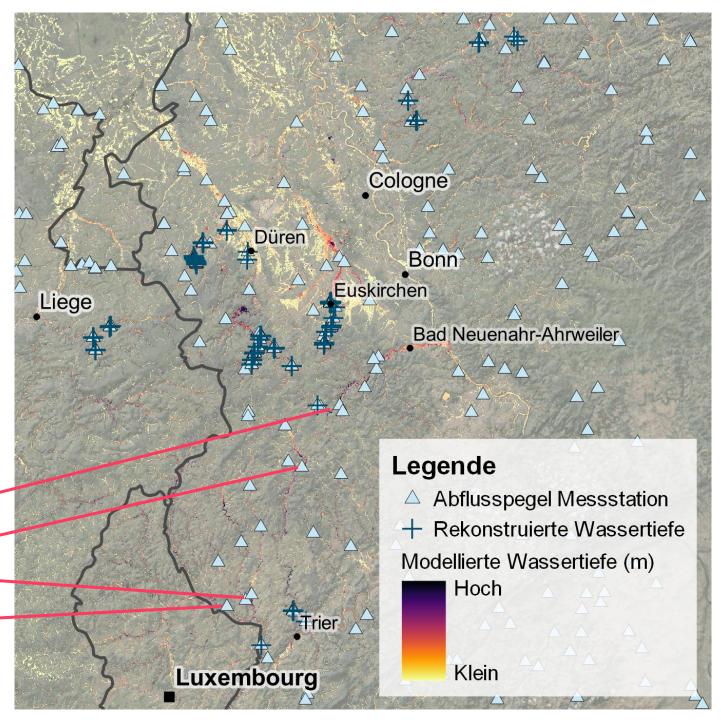
© 2022 Risk Management Solutions, Inc. and/or its licensors and affiliates. All rights reserved.


Bernd in perspective: Peak discharge for 2002, 2013, and 2021 floods

© 2022 Risk Management Solutions, Inc. and/or its licensors and affiliates. All rights reserved.

Event Footprint Reconstruction

- Precipitation based reconstructed footprint of July 2021 Floods
- Water level records of 700 river gauges (predom smaller and medium sized rivers)
- Collection of water depth measurements during reconnaisance trip at appr. 200 locations



River Discharge Return Period

- Event peak discharges 2021 exceeding previous records in many cases
- Kyll, Ahr HQ100 exceeded by a factor of 2 to 2.4, Erft at 1.6 *
- Table: Return period of matching gauges based on stochastic event catalogue of RMS HD Europe Inland Flood Model

Peak Discharge	Mapped RP [a]	River	
164 m³/s	> 500 a	Ahr	4
151 m³/s	175 a	Kyll	4
275 m³/s	175 a	Prüm	←
800 m³/s	250 a	Our	4

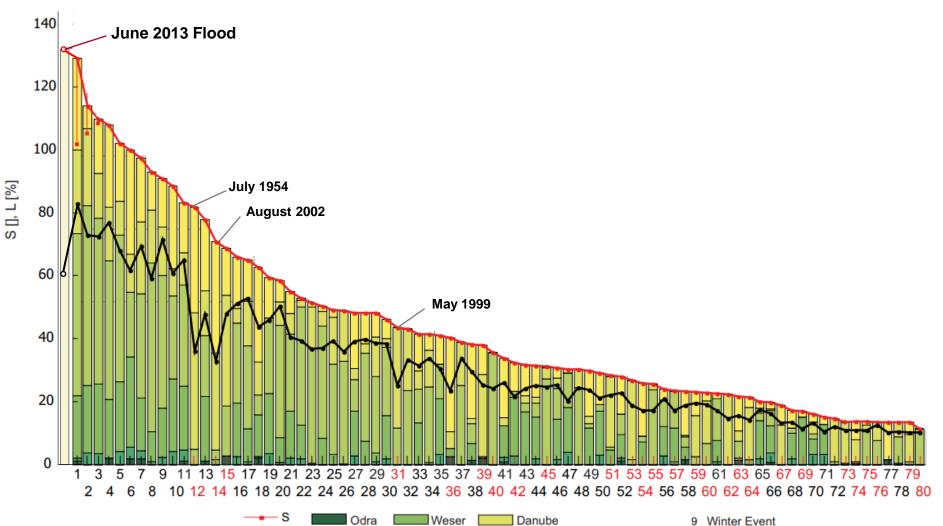
*Schäfer, A., et al., Center for Disaster Management and Risk Reduction Technology, 2021: Hochwas-ser Mitteleuropa, Juli 2021 (Deutschland). 21.Juli 2021 – Bericht Nr. 1 <u>https://www.cedim.kit.edu/download/FDA_HochwasserJuli2021_Bericht1.pdf</u>

Event Summary

- The July Floods in Central Europe were caused by widespread intense and prolonged, locally extreme rainfall
 - Rainfall events of this magnitude are rare, but not unlikely
- Flooding caused strong surface water flooding and flood waves in smaller rivers, i.e. tributaries to the Rhine and Meuse (No flood wave in the Rhine!)
- The flood event has affected a relatively densely populated region with a high value concentration
- Majority of the worst affected rivers with no recent flood history
 - Authority maps did not account for historic floods of 1804 and 1910
 - · Very limited structural flood defense in place, design levels of infrastructure exceeded
 - Crisis response not trained; warning chains failed
- Highest death toll from river flooding in Europe since 1970

Event Summary and Key Findings

- Event characterized by numerous loss amplifying factors
 - Inundation depths very relatively deep
 - High flow velocity, high debris load, undercutting and damage to the foundations occurred
 - Short warning times or lack of response to warning increased the damage
 - Widely used oil heating systems increased risk of contamination
 - Destroyed roads, bridges and infrastructure, as well as the large volume of repairs have slowed damage recovery and are the reason for long business interruption (BI) and post-event loss amplification (PLA)
 - Very high demand surge compounded by covid induced (global) cost inflation and regional labor shortage



Appendix

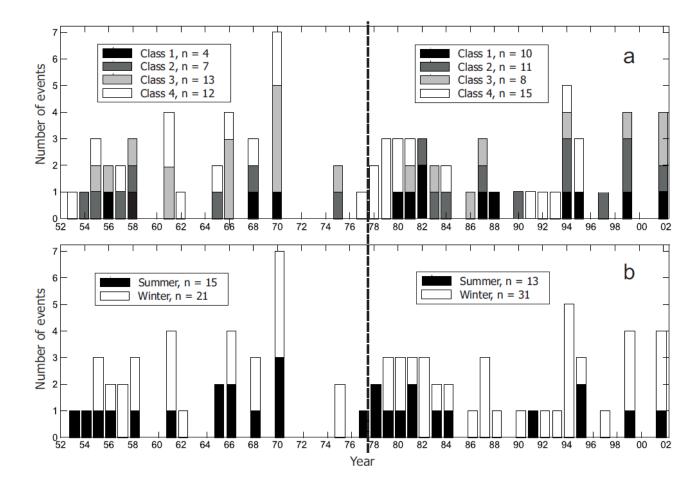
© 2022 Risk Management Solutions, Inc. and/or its licensors and affiliates. All rights reserved.

20

A consistent set of trans-basin floods in Germany between 1952–2002

Rhine

Ems


Elbe

15 Summer Event

A consistent set of trans-basin floods in Germany between 1952–2002

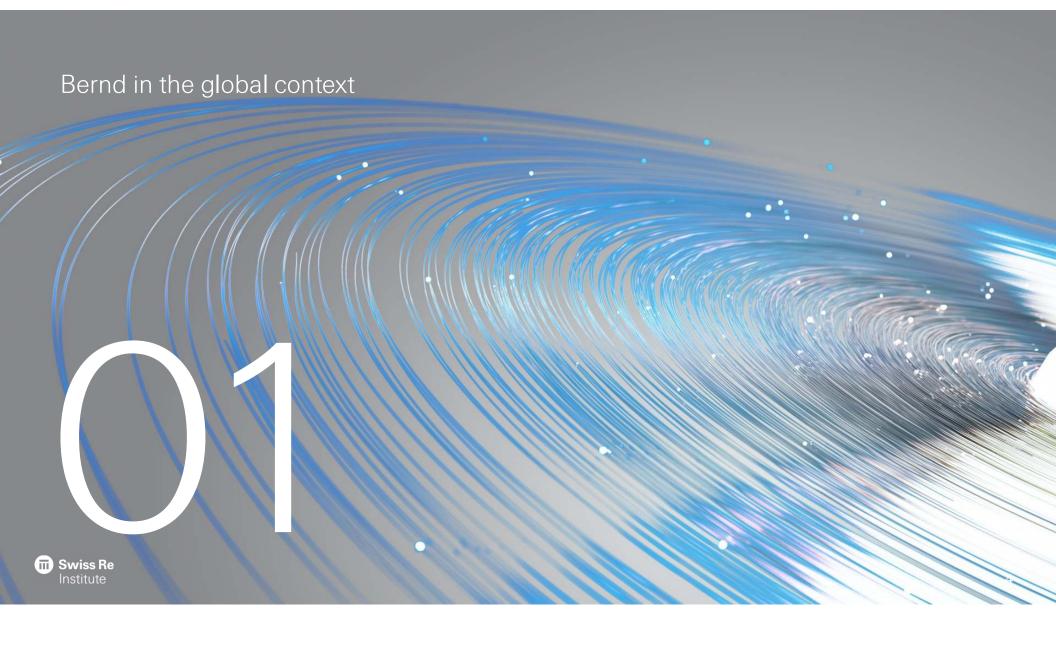
Fig. 1. Basins, locations of gauges, and river network used in the

Rank	Start		End	Rank	Start			End		Rank	Start			End	
1	15 3 1988	- 11	4 1988	29	28	2	1987 -	7	3	1987	57	30	5 1984	- 7	6 1984
2	22 2 1970	- 4	3 1970	30	5	12	1981 -	12	12	1981	58	17	3 1979	- 19	4 1979
3	23 1 1995	- 7	2 1995	31	11	5	1999 -	27	5	1999	59	19	5 1965	- 30	5 1965
4	31 12 1981	- 18	3 1 1982	32	20	3	2002 -	26	3	2002	60	28	5 1995	- 5	6 1995
5	29 10 1998	- 11	11 1998	33	26	1	2002 -	2	2	2002	61	12	1 1993	- 20	1 1993
6	9 3 1981	- 26	5 3 1981	34	7	2	1958 -	22	2	1958	62	8	8 1970	- 15	8 1970
7	3 3 1956	- 17	7 3 1956	35	18	12	1965 -	28	12	1965	63	21	7 1980	- 28	7 1980
8	20 12 1993	- 31	1 12 1993	36	28	6	1958 -	18	7	1958	64	5	7 1955	- 20	7 1955
9	4 2 1980	- 14	4 2 1980	37	22	2	1957 -	4	3	1957	65	8	2 1961	- 15	2 1961
10	30 12 1986	- 10	0 1 1987	38	11	4	1970 -	3	5	1970	66	5	3 1979	- 12	3 1979
11	15 1 1968	- 25	5 1 1968	39	19	7	1981 -	30	7	1981	67	28	8 1995	- 6	9 1995
12	2 7 1954	- 31	1 7 1954	40	25	5	1983 -	31	5	1983	68	17	3 1957	- 8	4 1957
13	10 4 1994	- 27	7 4 1994	41	29	12	1974 -	7	1	1975	69	4	6 1981	- 12	6 1981
14	9 8 2002	- 24	\$ 2002	42	13	7	1956 -	31	7	1956	70	5	12 1961	- 17	12 1961
15	1 6 1965	- 20	0 6 1965	43	25	3	1987 -	1	4	1987	71	24	1 1994	- 4	2 1994
16	25 2 2002	- 4	3 2002	44	25	12	1954 -	8	1	1955	72	17	6 1991	- 25	6 1991
17	23 1 1982	- 8	3 2 1982	45	11	5	1970 -	18	5	1970	73	30	7 1977	- 8	8 1977
18	8 12 1974	- 21	1 12 1974	46	19	1	1986 -	23	1	1986	74	22	8 1970	- 30	8 1970
19	31 12 1993	- 9	9 1 1994	47	4	12	1960 -	13	12	1960	75	25	6 1953	- 7	7 1953
20	24 2 1958	- 3	3 1958	48	9	2	1970 -	13	2	1970	76	8	8 1978	- 13	8 1978
21	24 12 1967	- 3	3 1 1968	49	18	3	1970 -	2	4	1970	77	30	4 1980	- 8	5 1980
22	6 2 1984	- 11		50	16	3	1994 -		3		78	21	12 1991		12 1991
23	10 1 1955	- 27		51	22		1966 -			1966	79	28	6 1966		7 1966
24	9 4 1983	- 20		52	13		1966 -	2		1966	80	22	9 1968	- 28	9 1968
25	20 2 1999	- 26		53	17		1979 -			1979					
26	15 2 1990	- 20		54	1	6		20		1961					
27	2 3 1999	- 7		55	22	5	1978 -			1978					
28	22 2 1997	- 3	3 3 1997	56	31	1	1961 -	5	2	1961					

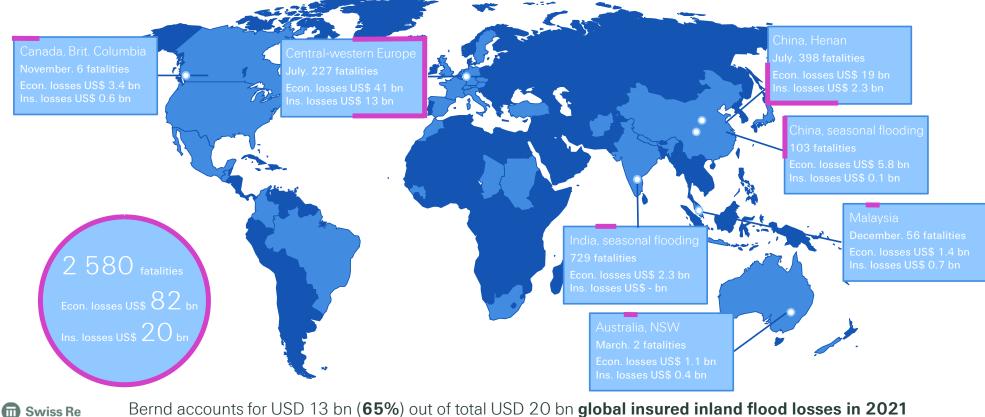
© 2022 Risk Management Solutions, Inc. and/or its licensors and affiliates. All rights reserved.

July 2021 European flood Bernd The Reinsurance practitioner's context

Tamara Soyka, Cat Perils EMEA


Table of Contents

Bernd in the global context04Drivers of flood risk globally09Loss drivers of the Bernd event15



Natural catastrophes in 2021: the floodgates are open

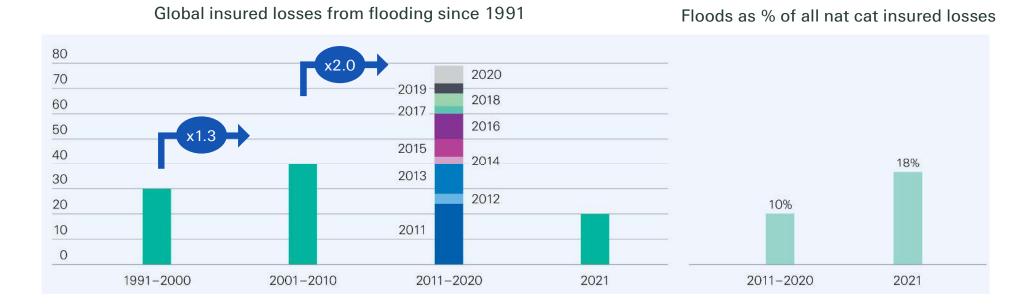
In 2021, there were more than 50 severe flood events globally, with flash fluvial and pluvial floods in urban environments causing the largest damages

Institute Data from s

Data from sigma 01/2022

Significant protection gap in flood risk - only 25% of global flood losses were insured in 2021, and only 15% in last decade

Swiss Re Institute

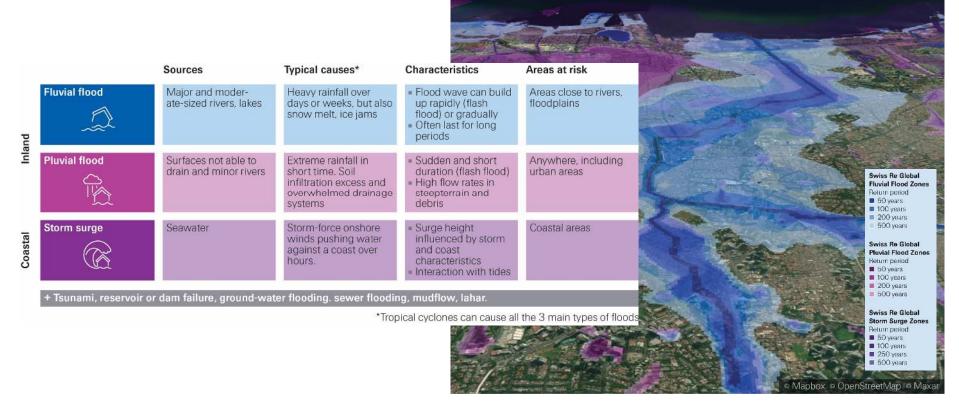

(m)

33

129

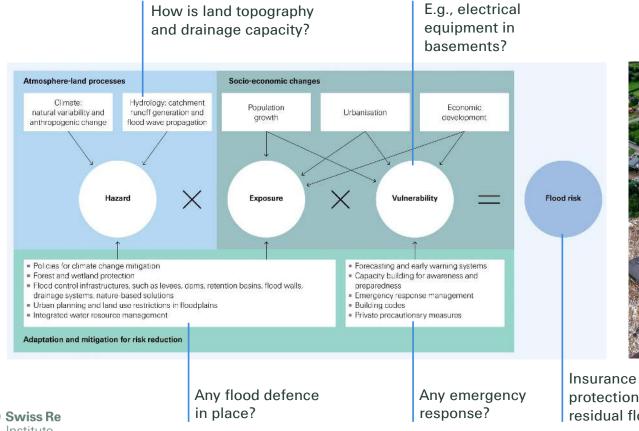
82

Insured flood losses are increasing and represent a significant share of 18% of all nat cat insured losses in 2021



Swiss Re Institute Data from sigma (

Data from sigma 01/2022



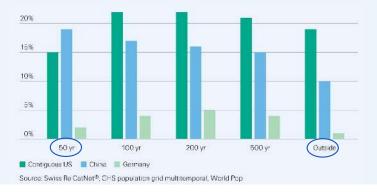
Understanding the drivers of flood risk: fluvial flood, pluvial flood and storm surge have different causes and loss factors

Flood risk is determined by a combination of climate and land processes, and influenced by socio-economic factors

Insurance for protection against residual flood risk?

Institute

Multiple drivers behind rising insurance losses, with economic growth, the accumulation of exposed asset values, and insurance penetration on top



Shanghai, 1990

Shanghai, today

Economic development Increasing values in line with GDP growth

Concentration in exposed areas Urbanisation, population growth

Insurance penetration Take-up rates, broader coverage, social inflation, regulatory changes

Changing vulnerability Sealing of surfaces, overbuilding in flood-prone areas

Changing hazard

Natural climate variability, climate change

11

Loss drivers of the Bernd event

Swiss Re
Institute

A complex interplay of many factors resulted in record losses from "Bernd"

Extreme precipitation over days. **Climate change** likely one driver for the increase of these events

Severe convective storms with heavy rain a month earlier had left the soils close to saturation

The topography with **steep river valleys** exacerbated the **flash intensity** of the event

Soil erosion and debris flow due to the heavy flows and fewer trees after 2018 drought

In some areas, the rapid onset of flooding undermined **alert and emergency systems**

Supply chain disruptions, inflation, increased material costs and labour shortages

The Bernd flood event emphasized the industry need of advanced Nat Cat models able to properly capture today risk and helping us closing the protection gap

Frequency increase

Germany was affected by 3 catastrophic floods in the last 20 years (2002, 2013 and 2021) and smaller flood and storm surge events every year.

Severity increase

The increase in precipitation rates brings more flash floods. These are characterized by high and fast water and debris flows that cause relevant damages. On top of this, we are experiencing pandemicrelated demand surge, supply chain disruption, and high inflation.

Cross-country correlation

Models need to cover more countries simultaneously to assure the cross-country event correlation is properly simulated, e.g. Germany with Belgium, Austria, CEE.

Flood protection measures

Proper considerations of available flood defences, their maintenance status, and design standards should be included. As an industry, we should support effective mitigation plans and building/maintaining flood infrastructures.

The underinsurance issue

More than half of Germany population is not covered against flood events. Innovative products based on a sound understanding of the risk should be offered aiming at closing the protection gap. Discussion on mandatory flood insurance ongoing.

14

Additional challenge: reinsurance contract and wording

- No standardized wording and unified market clauses in Germany
- Different event definitons
 - Examples: jet stream, atmospheric perturbation, weather pattern, named pressure area
 - Often, independent decision instance is not defined (for example, national weather services)
- Particularity of Bernd: Combination of pluvial and fluvial flooding
- Usually, **different event duration definitions and sublimits** for inundation stemming from rain or river flood
 - Clarification lacking if combination of hazards occurs

Call for action to collaborate on data and insights

"We believe flood risk is insurable. Flood should be afforded the same attention as primary perils regarding quality of exposure and claims data."

Swiss Re
Institute

Re/insurers are instrumental for building flood resilience by acting in 3 directions

Assess flood risk rigorously

- Use actively existing technology and model capabilities
- Quantify and de-bias for today and future macro trends
- Push for **data** quality, transparency, and flow, as for primary perils

Close flood infrastructure gap

- Flood defences are **aging** and could not be adequate for today climate
- Green infrastructure required for new and more sustainable defences
- By underwriting risks of green infrastructures, insurers can support the sustainability agenda and gain access to new risk pools

Close flood protection gap

- Since 2012, 85% flood losses uninsured (95% in emerging markets and 66% in advanced economies)
- Incumbent to increase risk awareness and develop risk transfer solutions: private insurance covers and national pool schemes

Call for action for the re/insurance industry

Make flood risk assessment more rigorous and develop risk transfer solutions.

	Call for action for the industry	The positive trajectory
1	Data quality, transparency, and flow: collect and include in submission data accurate flood-related exposure, claims, policy information	Detailed exposure available on building level, including correct coverage coding for flood
2	Expand model capabilities: probabilistic models for the different types of flooding and markets	Pluvial and tropical cyclone-induced floods represented along side fluvial and storm surge risk for major markets
3	Ensure representation of present-day risk: frequent recalibration and debiasing of models from macro trends	Underwriting using flood models with near-future perspective, instead of experience costing
4	Ensure representation of future risk: scenario simulations projecting to 2050–2100 horizons	Regulatory requests for climate change scenarios to inform business strategy
5	Increase risk awareness and transfer solutions: private insurance covers and national pool schemes	Flood insurance products available for privates and successful examples of national schemes

Any questions?

Thank you!

Contact us

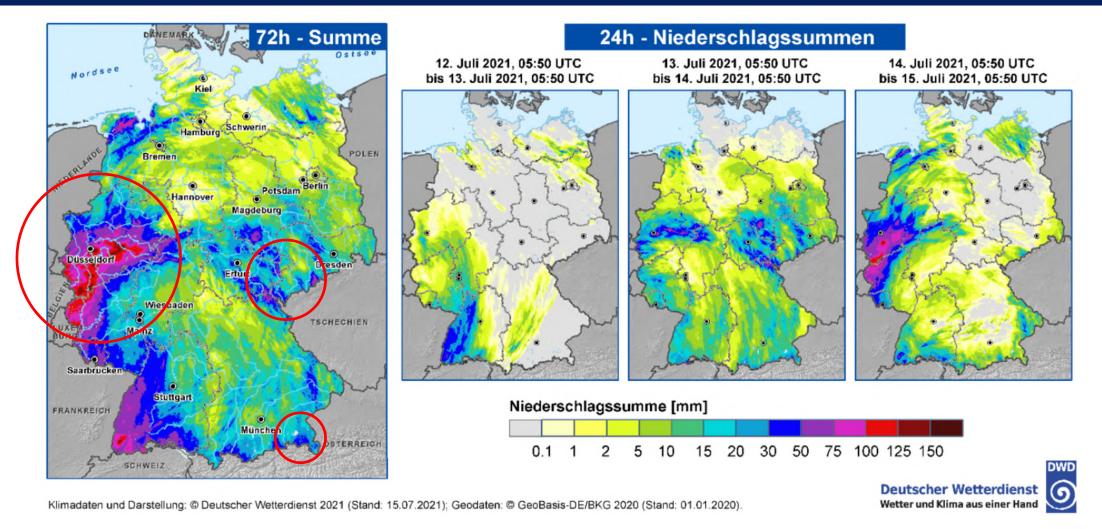
Tamara Soyka Head Cat Perils EMEA Swiss Re tamara_soyka@swissre.com Follow us

Legal notice

©2022 Swiss Re. All rights reserved. You may use this presentation for private or internal purposes but note that any copyright or other proprietary notices must not be removed. You are not permitted to create any modifications or derivative works of this presentation, or to use it for commercial or other public purposes, without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and may change. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for its accuracy or comprehensiveness or its updating. All liability for the accuracy and completeness of the information or for any damage or loss resulting from its use is expressly excluded.

Lessons Learned from European Flood "Bernd"


An Insurance Association Viewpoint - German Market

April 12, 2022

Oliver Hauner, GDV

Preface: Who is Bernd?

ISCM Bernd

Source: DWD German Weather Service,

 $https://www.dwd.de/DE/leistungen/besondereereignisse/niederschlag/20210721_bericht_starkniederschlaege_tief_bernd.pdf?_blob=publicationFile&v=6$

50,000+ vehicles damaged nearly 100% write-offs

Key Takeaway No. 1

expect the unexpected

civil disaster warning failed for a multitude of reasons

ISCM Bernd

Key Takeaway No. 2

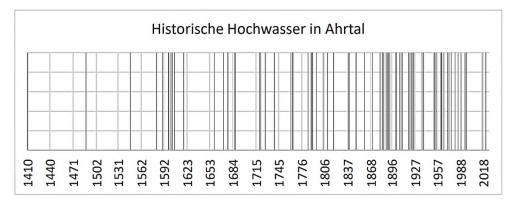
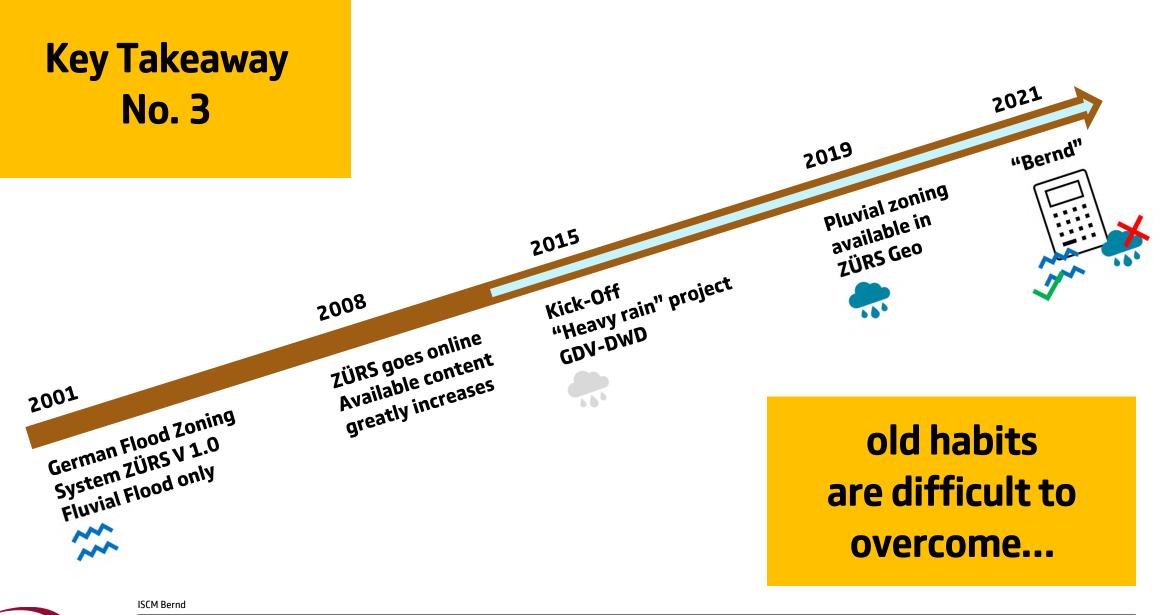


Abbildung 14: Historische Hochwasser in Ahrtal (Quelle: Adaptiert von Frick (1955), Seel (1983), RLP Daten, Pegelstände); mindestens 70 Hochwasser seit 1410.

remodel the past to enhance your view of the future



The flood of 1910 may have been of a similar magnitude as 2021...

However, science assumes that the flood event of 1804 on the river Ahr was **more severe** than the flood event of 2021.

Since there is not only one "Ahr Valley" in Germany, events of the 2021 magnitude can be expected nationwide several times in a century (GDV Flood-Model HQ Kumul 2.1 = 40y to 60y).

*SCR 99,5 % quantile ⇔ 200y return period

GD\

...insured perils are fire, escape of water, windstorm, hailstorm and inundation (including pluvial flooding, heavy rain and sewer backwater)...

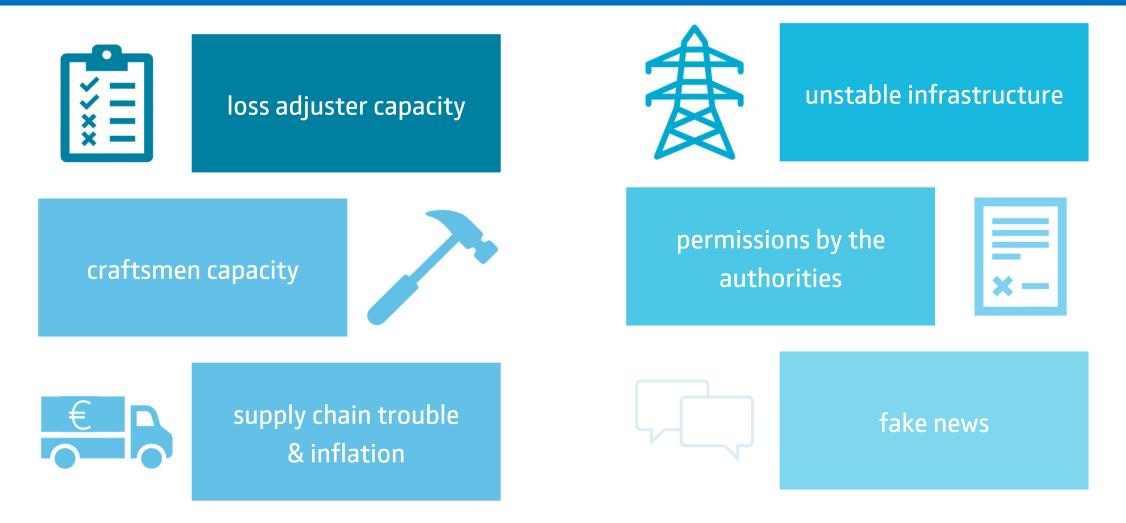
...inundation caused by storm surge is not insured...

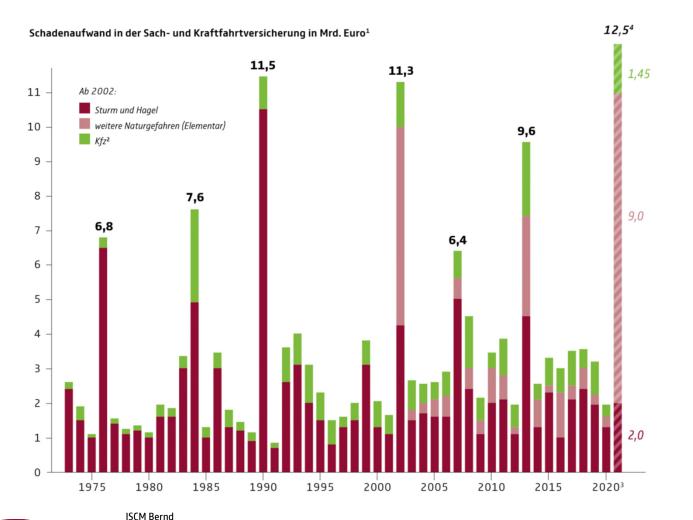
...insured perils are fire, escape of water, windstorm, hailstorm and **heavy rain**...

...inundation caused by **pluvial flooding**, sewer backwater or storm surge is not insured...

Key Takeaway No. 4

> loss experience vs. marketing: and the winner is...




Source: GDV ZÜRS

Key Takeaway No. 6 - shareholder value is the least problem...

2021 was the most expensive natural hazard year so far, but we are still a long way from hitting the Solvency II "thresholds*"

Key Takeaway No. 7

comprehensive analytical statistics are essential for media coverage and political discussion

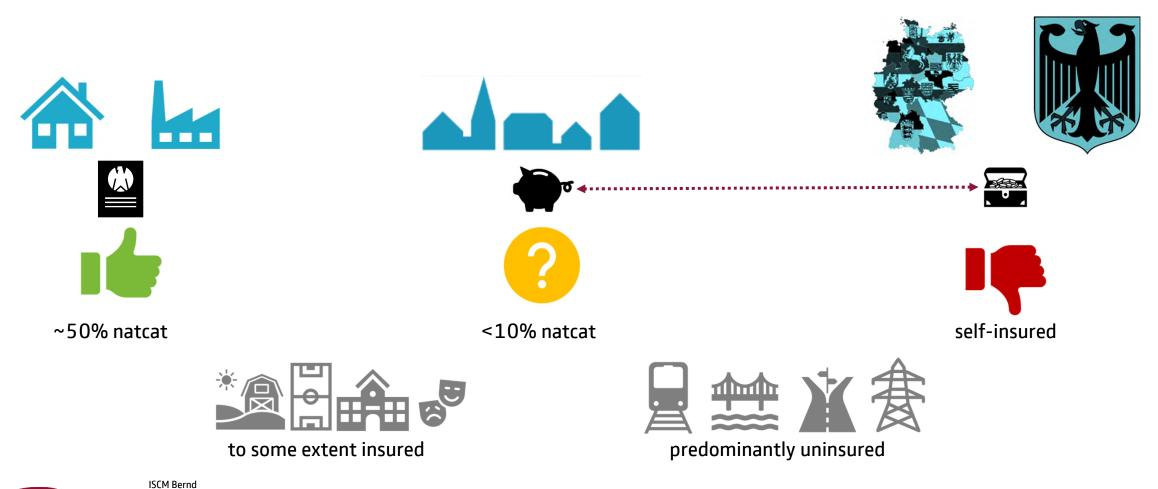
*SCR 99,5 % quantile ⇒ 200y return period

Key Takeaway No. 8 - make natcat insurance future-proof

Extreme weather events? We need a mandatory natcat-insurance (only)!

(aka the insurance industry & the policyholders will pay for the consequences of climate change)

Binding steps for climate adaptation measures / prevention


Provision for the catastrophic accumulation loss event

A new system for Germany

 ⇒ these elements not only build on each other, but are directly
dependent on each other

Epilogue: 30bn € total economic loss / 8bn € insured loss - will things change?

Thank you. Questions?

Oliver Hauner

Head of P&C, Engineering, Loss Prevention & Statistics

Wilhelmstraße 43 / 43G 10117 Berlin Tel.: 030-2020 5000 Fax: 030-2020 6000 E-Mail: berlin@gdv.de Rue du Champ de Mars 23 B - 1050 Brüssel Tel.: 0032-2-2 82 47 30 Fax: 0049-30-2020 6140 E-Mail: bruessel@gdv.de

www.gdv.de

www.DieVERSiCHERER.de

facebook.com/DieVERSiCHERER.de

S Twitter: @gdv_de

www.youtube.com/user/GDVBerlin

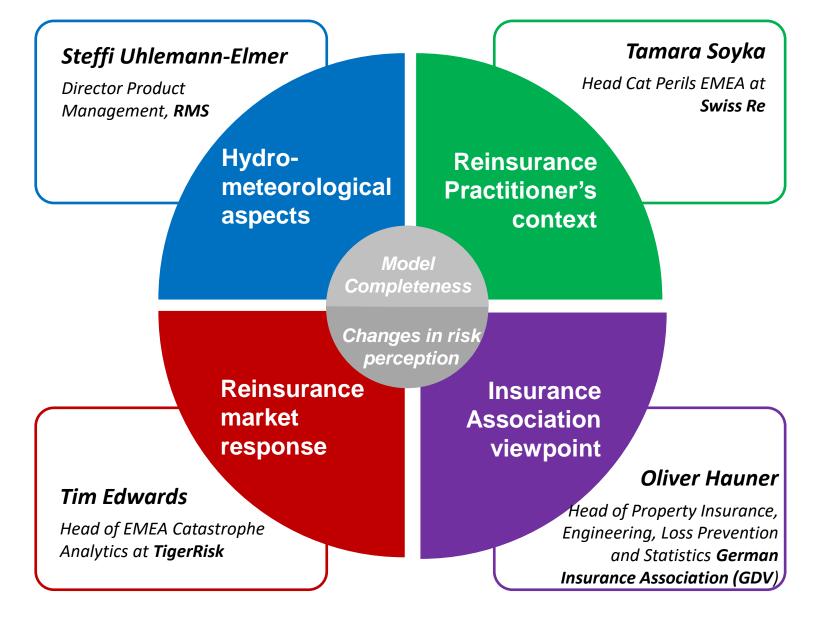
year	name of event	insured losses in €	# of claims	average loss in €	# of major losses (> 100.000 €)
2002	European Floods in August (Germany)	1.800.000.000	107.000	13.500	63
2010	Event "Viola"	260.000.000	13.000	13.800	15
2013	European Floods in June (Germany)	1.650.000.000	120.000	19.500	270

zip code	district	incidence of loss in ‰	average loss in €
05366	LK Euskirchen	280,1	62.353
07131	LK Ahrweiler	210,8	209.543
05914	SK Hagen	123,8	28.614
05316	SK Leverkusen	107,5	36.563
05362	LK Rhein-Erft-Kreis	100,3	23.582

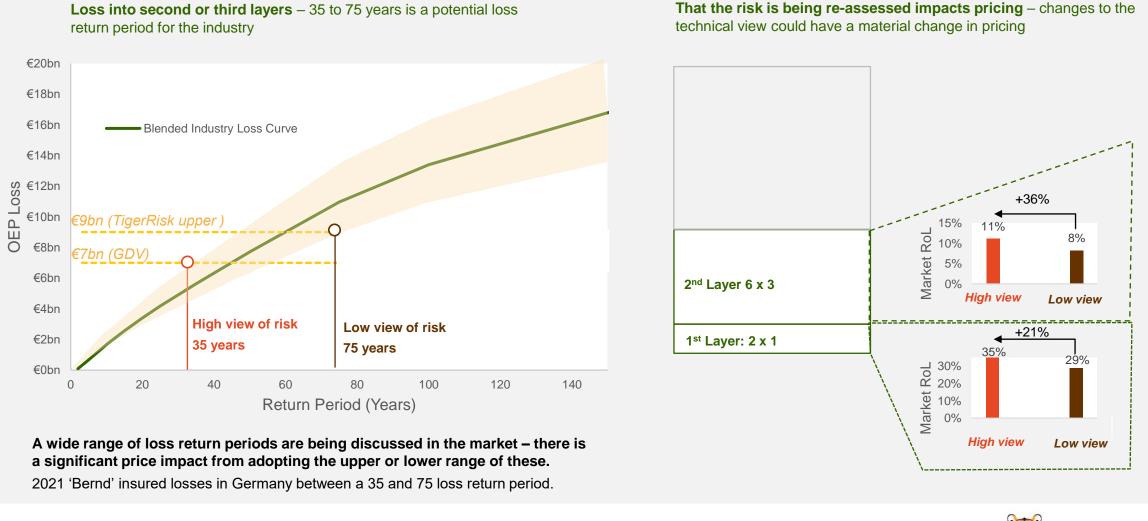
INTERNATIONAL SOCIETY OF CATASTROPHE MANAGERS

July 2021 European Floods, 'Bernd'

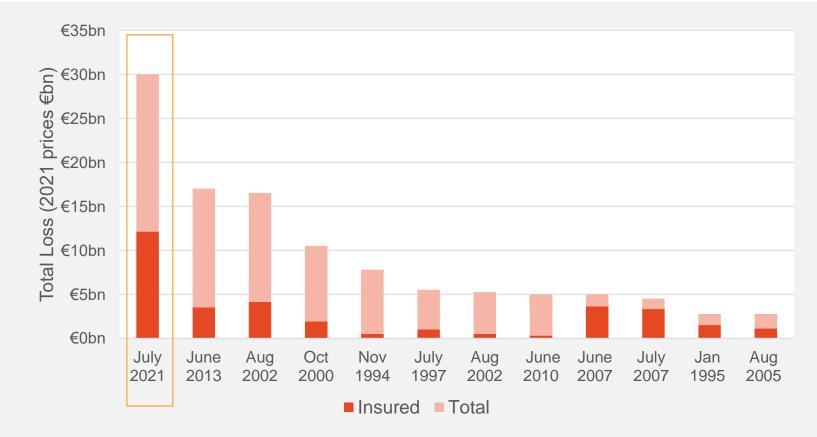
April 12th 2022


Tim Edwards, Head of EMEA Catastrophe Analytics

THE NEW BREED IN RISK MANAGEMENT & CAPITAL SOLUTIONS



Lessons learnt from the July 2021 European 'Bernd' floods



The challenge in estimating loss return periods – its importance in pricing

The challenge in estimating loss return periods – a lack of consistent loss data over time

2021 'Bernd' floods were the largest European flood event in 30+ years: Insured and total losses, source: Swiss Re, CRESTA Clix, Munich Re Nat Cat Service

An empirical analysis framework

- July 2021 'Bernd' is the largest insured flood event since the 1990's, when expressed in terms of 2021 prices.
- There are just 3 significant reference events for Germany since 2002 but others back to the 1800's if you use the hazard information
- Significant non-stationary impacts to consider when referring to historical events: exposure change, insurance market terms and changes to flood hydrology and run-off conditions all need to be taken into account when indexing losses.

The challenge in estimating return periods – *looking at precipitation levels over time*

Blankenheim

1000

Empirical RP

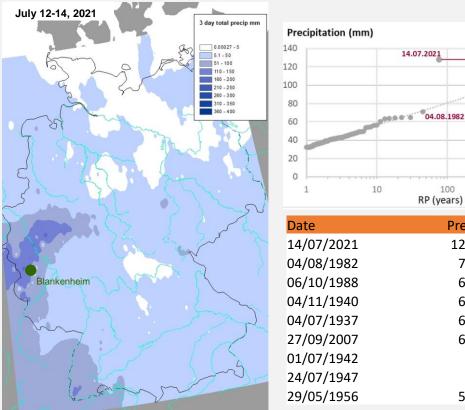
?

45

30

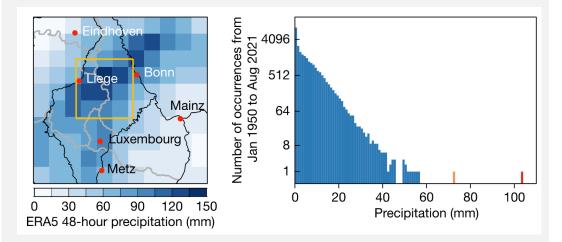
18

15


12.9

11.3

10


22.5

Extreme local rainfall not seen in history, for that region, 1.8 times higher than previous levels seen in 1982 at Blankenheim weather station highlighting the 'futility' in modelling this return period.

2021 'Bernd' floods peak rainfall: 3 day total precipitation in mm (data:https://cdc.dwd.de/portal/202204011005/mapview).

Across the surrounding region this was also record level of rainfall, the 2 day period from 13th-14th July has not been observed over the 72 year ERA 5 rainfall record

'Bernd' a regional precipitation record. The left-hand chart shows 48-hour precipitation from the ERA5 reanalysis for 13 July 06 UTC to 15 July 06 UTC. The yellow box highlights the area of 50-51°N and 5.5-7°E. The righthand chart shows the distribution of 48-hour ERA5 precipitation for all days from January 1950 to August 2021 in that area. The period 13 July 06 UTC to 15 July 06 UTC 2021 is denoted by the red bar and 14 July 06 UTC to 16 July 06 UTC by the orange bar

https://www.ecmwf.int/en/newsletter/169/news/extreme-rain-germanyand-belgium-july-2021.

A truly extreme event – for that region

100

Precip

129.2

70.8

64.5

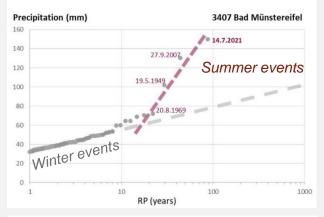
64.4

64.1

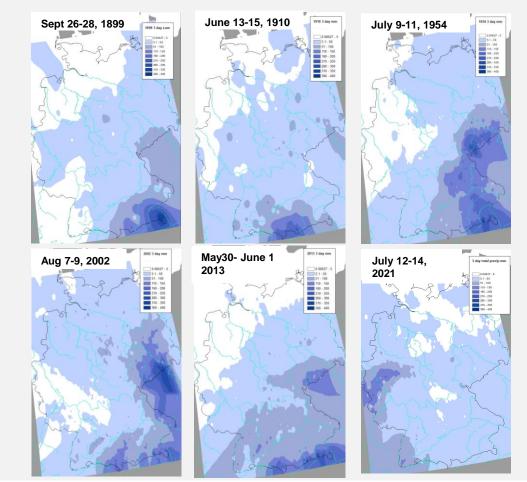
63.7

63

60


56.5

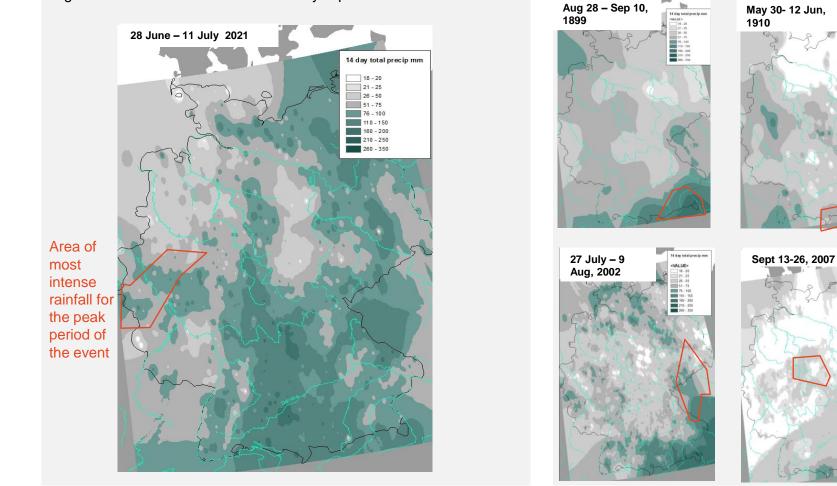
RP (years)


The challenge in estimating return periods – comparing precipitation across events

2 separate flood perils? - Summer vs Winter rainfall climatology, evidence suggests summer events may be more intense. Mann, M., Rahmstorf, S., Kornhuber, K. et al. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Sci Rep 7, 45242 (2017).

Historical rainfall return periods using empirical frequencies (ie not modelled): Frequency analyses of daily precipitation at the stations Bad Münstereifel and Köln-Stammheim (DWD data). Source: KA Köln.Assekuranz Agentur, 2021 A comparison to historical events shows these summer rainfall events have occurred in the past across Germany, albeit not in the Ruhr

Source data: https://cdc.dwd.de/portal/202204011005/mapview


A truly extreme event - for that region

The information contained in this document is strictly proprietary and confidential.

The challenge in estimating return periods – comparing the antecedent conditions

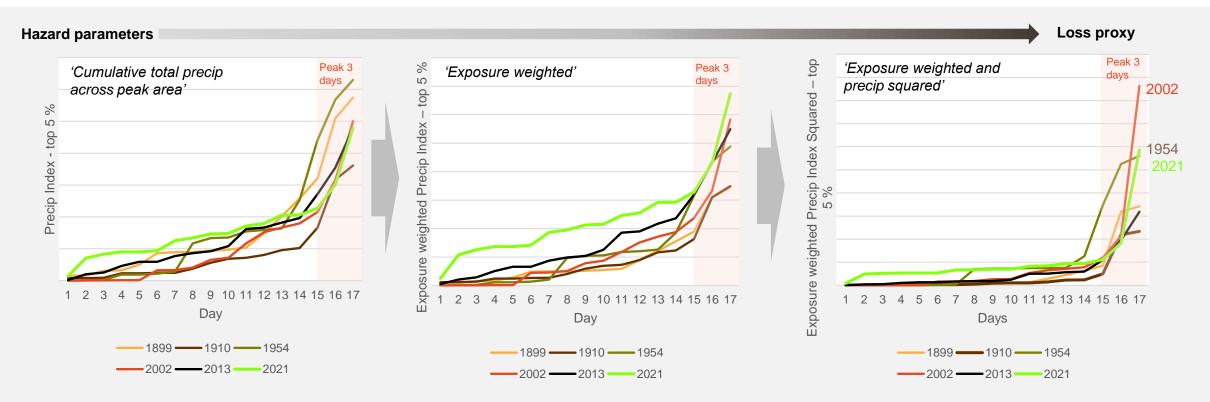
Extreme local rainfall that was accompanied by 'medium' level of groundwater saturation from the 14 day's prior rainfall

A comparison to antecedent conditions from other events

June 24 – 7 July,

May 16 - 29

2013

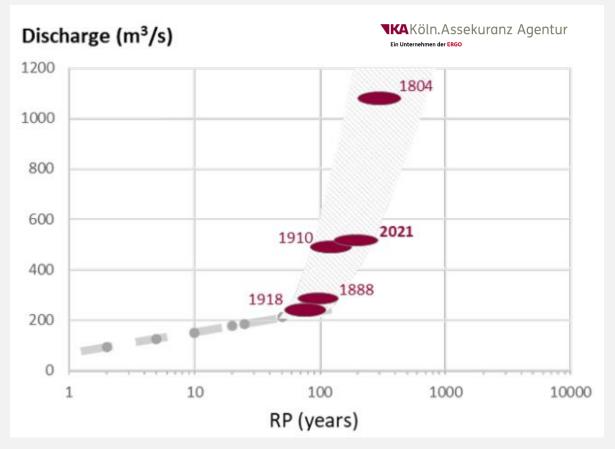

1954

day total precip

2021 'Bernd' flood antecedent conditions: 14 day total precipitation in mm prior to max 3 day period (Source data: https://cdc.dwd.de/portal/202204011005/mapview).

Building the extreme rainfall index – considering both 3 day peak rainfall and antecedent conditions

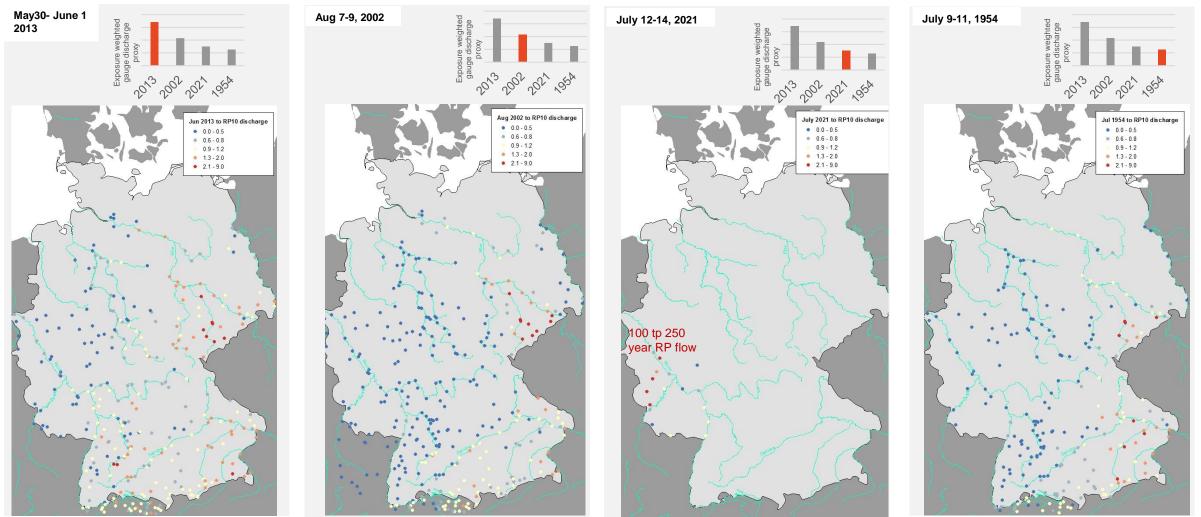
The challenge in estimating return periods – *designing an extreme rainfall index*


Extreme rainfall index: a.) cumulative total precipitation index in mm across top 5% of postcodes (left), b.) exposure weighted version of a.), c.) exposure weighted version of a.) squared. (data:https://cdc.dwd.de/portal/202204011005/mapview).

The extreme rainfall index suggests the 2021 Bernd flood was the second or third largest 'flash flood' loss event in 120+ years

The challenge in estimating return periods – *river discharge comparison for one gauge*

2021 'Bernd' river flows in the Ahr likely a 1 in 100-250 year event. *Frequency analysis of the discharges of the river Ahr at the gauge Altenahr (data: Landesamt für Umwelt Rheinland-Pfalz, HERGET & ROGGENKAMP 2015).*

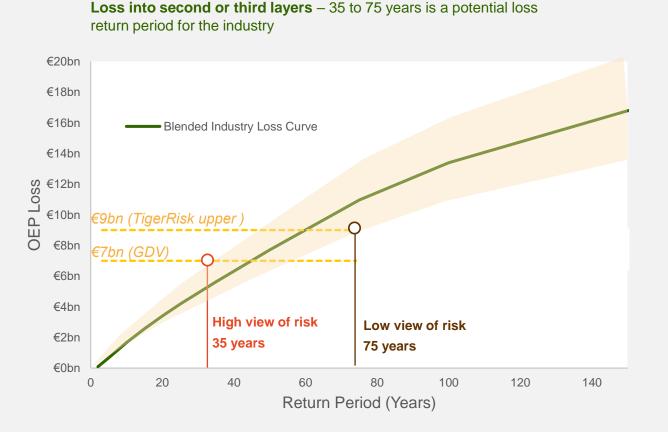

- Fluvial flood risk extreme rainfall considers the risk from flash-flooding but what about periods of prolonged rainfall across the broader river network?
- The extreme catastrophe of 1804 is likely to have been a 300- to 500-year event, although an uncertainty range of up to a return period of 1,000 years is appropriate.
- According to KAA's evaluation, the flood of July 2021 can thus be classified as a 100- to 250-year event, just like the flood of 1910, <u>for the region.</u>

However a need to also consider all gauges in combination

A truly extreme event - for that region, though with historical precedent

The challenge in estimating return periods – *river discharge index*

Exposure weighted river discharge index: peak monthly discharge relative to 10 year RP discharge (above), this ratio squared weighted by exposure shown (top). (Source data: German Federal Waterways and Shipping Administration (WSV), German Federal Institute of Hydrology (BfG))


Largest loss proxy

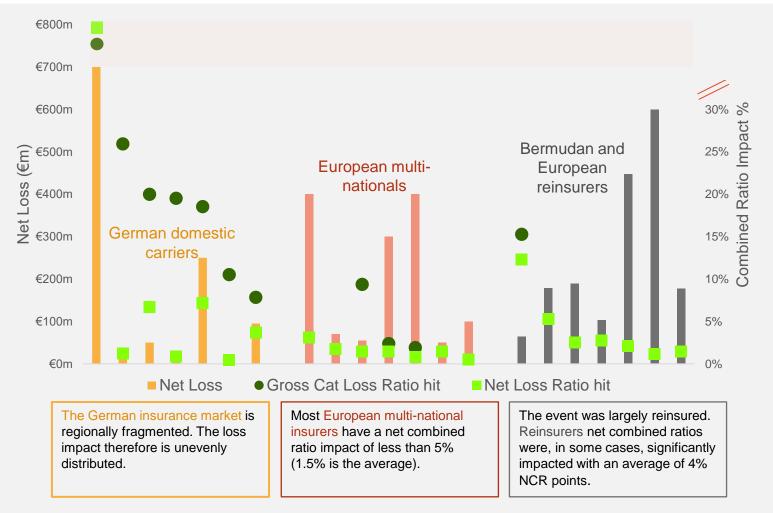
The river discharge index suggests the 2021 Bernd flood was the third largest 'river flood' loss event in 70+ years

Smallest loss proxy

Fluvial floods (river floods)

The challenge in estimating return periods

2021 'Bernd' insured losses in Germany between a 35 and 75 loss return period.


Conclusions on the return period analysis

Flash floc

- 35 to 75 year return period appears reasonable – the 2021 extreme rainfall and discharge event characteristics have occurred more frequently than a 1 in 100 year probability, albeit less frequently than a 1 in 25 year probability would suggest. Is summer flood its own peril?
- Climate impacts: whilst the extreme rainfall and discharge event characteristics have occurred in history should summer floods be considered a separate peril to winter floods? It may be important to stress-test the impact of more 'Vb' summer extreme rainfall events occurring.
- A new peak peril: given the likely increase in insurance penetration is flood the most significant cat peril for short and long periods?

How were cedants and reinsurers impacted by the event?

Net Loss size and combined ratio impact as at December 2021. Ordered left to right by gross combined ratio impact, if available. Source: publicly available data and TigerRisk analysis

How did the event impact the reinsurance market?

- Local cedants' experience varied significantly given the fragmented nature of the market. The multi-nationals were less impacted, relatively speaking. The event was largely reinsured.
- European Flood is a known modelled peril but certain amplifying non-modelled factors increased the severity of the event.
- Predominantly a reinsured event it has led to some restructuring of programs and repricing for the risk.
- Inclusive of the infrastructure losses, this was a €30bn + event, this has ramifications for how international flood risk is perceived

GET INVOLVED

Tech and Web

Developing new and improved website containing industry calendar; white papers; forum; job opportunities.

Marketing

Messaging current happenings and web content. Promoting ISCM and the Cat Credentials.

Education

Plan virtual and in person sessions for all levels in the field.

Credential Exams

Exam writing and review of Experienced Industry Practitioner applications.

INTERNATIONAL SOCIETY OF CATASTROPHE MANAGERS

email us: info@catmanagers.org